HEAVY DARK MATTER IN THE GALACTIC CENTER

Dan Hooper

Fermi National Accelerator Laboratory

► Gamma-Ray Measurements

-ACTs: HESS, Whipple, Cangaroo-II

-Satellites: EGRET and the Future Role of GLAST

► Dark Matter?

- -Gamma-Ray Spectrum and Flux
- -Characteristics Required to Accommodate HESS Data

► Messenger Dark Matter

- -Messenger Sector, Gauge Mediated SUSY Dark Matter Model
- -Plausible and Attractive Source of HESS Signal

Based on hep-ph/0412048, PLB, with J. March-Russell and astro-ph/0404205, JCAP, with I. Perez, J. Silk, F. Ferrer and S. Sarkar

GAMMA-RAYS FROM DARK MATTER ANNIHILATION: SPECTRAL FEATURES

▶ Line Emission

- -No tree level photon final states for typical DM candidates
- -Loop diagrams to $\gamma\gamma$, γZ , γH
- -Smaller cross section, but distinctive features

▶ Continuum Emission

- -Annihilations to gauge bosons, quarks, leptons, etc. contribute
- -Typical energies much lower than WIMP mass

GAMMA-RAY SPECTRUM: BEFORE HESS

- ► CANGAROO-II Observation
 - -Spectrum consistent with 1-3 TeV annihilating particle
- **▶** Whipple Observation
 - -Substantial flux above 2.8 TeV
 - -Difficult to reconcile with CANGAROO-II

(Hooper, et al., JCAP, astro-ph/0404205)

AND THEN THERE WAS HESS...

► The HESS Telescope

- -Array of 4 ACTs
- -Southern Hemisphere Location (Namibia)
- -Superior Spectral and Angular Resolution

GAMMA-RAY SPECTRUM: AFTER HESS

► HESS Observation

- -Spectrum Extending to $\sim 10~\text{TeV}$
- -Very different from Cangaroo-II spectrum
- -Roughly consistent with Whipple

(D. Horns, astro-ph/0408192)

GAMMA-RAY SPECTRUM: AFTER HESS

▶ Dark Matter Characteristics

- -Requires 10-40 TeV mass
- -Well outside of range generally favored

(D. Horns, astro-ph/0408192)

CAN A NEUTRALINO BE AS HEAVY AS 10-40 TEV?

- Very heavy neutralinos tend to overclose Universe
- Largest annihilation cross sections (lowest relic density) are found for models in which the lightest neutralino is Wino-like or Higgsino-like
- $-\Omega h^2 \sim 0.1$ for ~ 1 TeV Wino, or ~ 3 TeV Higgsino
- Larger masses are only possible if coannihilations are carefully arranged

Can A Neutralino Be As Heavy As 10-40 TeV?

- Electroweak precision measurement infer the presence of a light higgs boson (not much above EW scale)
- Large contributions to the higgs mass come from particle loops

$$\Delta m_H^2 = -\frac{\lambda_t^2}{8\pi^2} \Lambda^2$$

$$\Delta m_H^2 = + \frac{\lambda_t^2}{8\pi^2} \Lambda^2$$

- In unbroken SUSY, fermion and boson contributions cancel
- If $m_{\rm SUSY} \gg m_{\rm H}$, precise fine tuning required
- $-m_{\rm SUSY} \lesssim {
 m TeV}$ strongly preferred

LOCATION, LOCATION, LOCATION

▶ Before HESS

-Ambiguity in Source Location(s)

(Hooper, et al., JCAP, astro-ph/0404205)

LOCATION, LOCATION, LOCATION

► After HESS

- -Precise angular resolution
- -Leaves only Sgr A* and nearby SNR as likely sources

(D. Horns, astro-ph/0408192)

THE EGRET SOURCE

▶ Does EGRET see the same source?

THE EGRET ANALYSIS

- ► EGRET: The Energetic Gamma Ray Experiment Telescope
 - -Launched on the Compton Gamma Ray Observatory in 1991
 - -Sensitive To gamma rays between 30 MeV and 30 GeV
 - -Accumulated an exposure of $\simeq .2 \times 10^{10}\, \rm cm^2\, sec\,$ of the galactic center region
- ► Galactic Center Source?
 - -Original EGRET analysis: single point spread function and 0.5° bins
 - ---> Flux found of $\sim 10^{-7}\,\mathrm{cm^{-2}\,s^{-1}}$ above 1 GeV, consistent with GC
 - -Dingus/Hooper analysis: energy dependent point spread function and unbinned technique
 - $-\rightarrow$ Source of flux 0.2° off-center, excluded from GC beyond 99.9%
 - --> Limit from GC of $10^{-7} 10^{-8} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$
 - -Consistent with HESS

(Hooper and Dingus, PRD, astro-ph/0210617)

GAMMA-RAYS FROM DARK MATTER ANNIHILATION: FLUX MAGNITUDE

► Gamma-Ray Flux

$$\Phi_{\gamma}(\psi, E_{\gamma}) = \langle \sigma v \rangle \frac{\mathrm{dN}_{\gamma}}{\mathrm{dE}_{\gamma}} \frac{1}{4\pi M_{X}^{2}} \int_{\mathrm{los}} \mathrm{dl}(\psi) \rho^{2}(\mathbf{r})$$

Break down Into 2 factors:

- 1) halo characteristics
- 2) particle physics

► Halo Factor

$$J(\psi) = \frac{1}{8.5 \,\mathrm{kpc}} \left(\frac{1}{0.3 \,\mathrm{GeV/cm^3}} \right)^2 \int_{\mathrm{los}} \mathrm{dl}(\psi) \, \rho^2(\mathrm{l})$$

-Value of $J(\Delta\Omega)$ highly uncertain

HALO MODELS

► Cuspy Halo Models

- N-body simulations favor cusped halo models, $\rho \propto 1/r^{\gamma}$, $\gamma \sim 1.2$
- -Includes Navarro, Frenk, White (NFW), and Moore et.al. profiles
- $-J(5 \times 10^{-5} \, \mathrm{sr}) \sim 10^4 \, \mathrm{to} \, 10^6$
- -With 10 arcminute resolution, appears as point source

► Core Halo Models

- -Some observations favor models with flat cores, $\gamma \sim 0$
- -Not dense enough to observe dark matter annihilation
- -Produces extended annihilation signal

▶ Other Effects

- -Adiabatic compression $\rightarrow J(5 \times 10^{-5} \, \mathrm{sr}) \sim 10^6 \, \mathrm{to} \, 10^8$
- -Adiabatic accretion onto SMBH \rightarrow density spike, $\gamma \simeq 2.4$

A SIGNAL OF DARK MATTER?

- **▶** Dark Matter Requires:
 - 1) Very heavy particle (\sim 10-40 TeV)

AND

- 2) Extremely dense inner halo (spikes, adiabatic compression, etc)
- ► Astrophysical Alternatives (Examples)
 - 1) Acceleration associated with SMBH (several possibilities)
 - 2) Nearby supernova remnant too near to rule out

(See: Aharonian and Neronov, astro-ph/0408303; Atoyan and Dermer, astro-ph/0410243)

HEAVY DARK MATTER?

► Electroweak Scale (10 GeV - a few TeV)

Neutralinos (or other superpartners), Kaluza-Klein Dark Matter, etc. Numerous examples associated with electroweak symmetry breaking or solutions to the hierarchy problem

► Light Dark Matter

Sub-eV masses: axinos

MeV masses: Source of 511 keV emission from galactic bulge?

► Superheavy Dark Matter

GUT scale? Inflationary scale? Planck scale?

Source of ultra-high energy cosmic rays?

HEAVY DARK MATTER?

► Electroweak Scale (10 GeV - a few TeV)

Neutralinos (or other superpartners), Kaluza-Klein Dark Matter, etc. Numerous examples associated with electroweak symmetry breaking or solutions to the hierarchy problem

► Light Dark Matter

Sub-eV masses: axinos

MeV masses: Source of 511 keV emission from galactic bulge?

► Superheavy Dark Matter

GUT scale? Inflationary scale? Planck scale? Source of ultra-high energy cosmic rays?

► 10-50 TeV Range?

Little attention in the literature

Perhaps due to difficulty in detecting such a candidate?

MESSENGER DARK MATTER

- ► Gauge Mediated Supersymmetry Breaking
 - -Supersymmetry is broken in \sim 100 TeV sector
 - -Messengers communicate SUSY breaking through gauge couplings
 - -LSP is a light gravitino (1-10 eV)
- ► Messenger Particles
 - -Lightest messenger particle is naturally stable
 - -MultiTeV scalar neutrino natural dark matter candidate

Hooper and J. March-Russell, PLB, hep-ph/0412048, Dimopoulos, Giudice and Pomarol, PLB, hep-ph/9607225, Han and Hempfling, PLB, hep-ph/9708264

MESSENGER DARK MATTER

▶ Messenger Particles

- -Phenomenological problems present in minimal SUSY model
- -Consider model with additional Higgs singlet (NMSSM inspired)

► Messenger Annihilations

-Potential includes the terms:

$$V = (4\xi_S \xi_N - 2\xi_N \eta_N) SN \bar{\Phi} \Phi + 2\eta_N k SN^3 - 2\eta_N \lambda_N NSH_u H_d + \dots$$

-Leads to the annihilation diagrams:

- -These diagrams are enhanced due to large $\langle S \rangle \sim 100~{\rm TeV}$
- -Yields observed dark matter density for $m_{\phi^0} \simeq 7$ to 30 TeV

Hooper and J. March-Russell, PLB, hep-ph/0412048 Han, Marfatia and Zhang, PRD, hep-ph/9906508

Messenger Dark Matter

► Gamma-Ray Spectrum

- -Consistent with HESS results
- -Favors 20-25 TeV mass range

Hooper and J. March-Russell, PLB, hep-ph/0412048

THE ROLE OF GLAST

► Gamma-Ray Spectrum

- -HESS cannot easily distinguish dark matter from power law
- -Measurements needed above 10 TeV, or below 200 GeV
- -If the product of dark matter, GLAST will see changing slope

CONCLUSIONS

► Gamma-Ray Observations of GC

- -Have ACTs Seen Signals of Annihilating Dark Matter?
- -If So, Very Heavy Particles Needed
- -Can We Accommodate These Observations With "Reasonable" Particle Physics Models?

► Messenger Dark Matter

- -Gauge Mediated SUSY Breaking Models
- -20 to 30 TeV Masses, Appropriate Cross Sections, etc.
- -Very Natural and Attractive Candidate for Dark Matter

► Many Fish In The Sea

- -MultiTeV Mass Range Has Thus Far Been Largely Ignored
- -Many Possibilities For Heavy Dark Matter Particles
- -Beyond the Reach of the Tevatron and LHC
- → Astroparticle Physics Provides Only Hope of Discovery!